The Specific Volume of Poly(tetrafluoroethylene) as a Function of Temperature ($30^{\circ}-372^{\circ} \mathrm{C}$) and Pressure ($0-2000 \mathrm{~kg} / \mathrm{cm}^{2}$)

PAUL ZOLLER,* Neu-Technikum Buchs, Kunststofflabor, CH-9470 Buchs, Switzerland

Synopsis

Experimental data on the specific volume of a 50% crystalline sample of poly(tetrafluorethylene) are presented and discussed. Data points were taken along 22 isotherms spaced 5 to $30^{\circ} \mathrm{C}$ apart (up to $372^{\circ} \mathrm{C}$) in pressure increments of $100 \mathrm{~kg} / \mathrm{cm}^{2}$ up to $2000 \mathrm{~kg} / \mathrm{cm}^{2}$. In addition to the melting transition and the first-order solid-solid transition near room temperature, a previously reported second-order transition near $140^{\circ} \mathrm{C}$ at $P=0$ is observed. This transition shifts to higher temperatures with increasing pressure by about $0.015^{\circ} \mathrm{C}$ per $\mathrm{kg} / \mathrm{cm}^{2}$. The melt data are discussed in detail. They can be fitted to both the empirical Tait equation, with the usual exponential temperature dependence of the Tait parameter, and to the Simha-Somcynsky hole theory (with the reducing parameters V^{*} $=0.424 \mathrm{~cm}^{3} / \mathrm{g}, T^{*}=7906^{\circ} \mathrm{K}$, and $P^{*}=7100 \mathrm{~kg} / \mathrm{cm}^{2}=6960$ bars), thus providing a test for this theory at high reduced temperatures near $\tilde{T}=0.08$.

INTRODUCTION

Pressure-specific volume-temperature (PVT) data of polymers yield a wealth of information to the polymer scientist and the plastics engineer. To the engineer they are helpful in an analysis of forming operations, which almost always involve elevated temperatures and high pressures. But they also add to his knowledge of material properties at end use conditions. The polymer scientist needs PVT data for comparison with theoretical equations of state and for the study of melt, glass, and secondary transitions. This work on poly(tetrafluorethylene) (PTFE) was motivated both by the applied and fundamental aspects of PVT data, and it continues the series of reports ${ }^{1-3}$ on PVT properties of polymers from our laboratory. Because PTFE is very stable at temperatures as high as $400^{\circ} \mathrm{C}$, we hoped, in particular, to be able to test the Simha-Somcynsky hole theory of polymers ${ }^{4}$ in a range of reduced temperatures never before reached. Previous work ${ }^{5}$ had often shown noticeable systematic differences between theory and experiment at the highest temperatures reached, although it is not clear whether these deviations were caused by inadequacies in the theory or by experimental difficulties.

EXPERIMENTAL

The sample of PTFE used in this work was machined from a ran-extruded rod, made by Polyflon Resine S.p.A, Italy (trademark Lubriflon). Its density by hydrostatic weighing was found to be $2.151 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$. This corresponds to a degree of crystallinity of about 51% or 52%, assuming zero void content. ${ }^{6}$

[^0]The apparatus and evaluation procedure for obtaining PVT data have been described in detail. ${ }^{1,2}$ The sample (in the case of PTFE about 2 g) is contained in a rigid sample cell one end of which is closed by a flexible metal bellows. The space in the cell not taken up by the sample is filled with mercury under vacuum. This sample cell is mounted in a pressure vessel, and pressures to $2000 \mathrm{~kg} / \mathrm{cm}^{2}$ are applied with a hand pump, ${ }^{7}$ using a stabilized silicon oil as the pressuretransmitting fluid. The pressure is transmitted to the contents of the sample cell by the flexible bellows, which expands until the pressure in the sample cell equals the applied pressure. The displacement of the bellows, which is measured by a linear variable differential transducer, can be converted into a volume change of the sample, making use of the cross-sectional area of the bellows and the known PVT properties of the confining mercury. This apparatus is capable of measuring specific volumes of polymers in the range of 30 to $380^{\circ} \mathrm{C}$ and pressures of $2000 \mathrm{~kg} / \mathrm{cm}^{2}$. The accuracy is about 0.001 to $0.002 \mathrm{~cm}^{3} / \mathrm{g}$ up to $200^{\circ} \mathrm{C}$ and 0.002 to $0.004 \mathrm{~cm}^{3} / \mathrm{g}$ up to $380^{\circ} \mathrm{C}$. The reduced accuracy at higher temperatures is caused by an uncertainty in the PVT properties of mercury above $200^{\circ} \mathrm{C}$.

Measurements of PTFE were performed along 22 isotherms spaced 5° to $30^{\circ} \mathrm{C}$ apart, and at pressure increments of $100 \mathrm{~kg} / \mathrm{cm}^{2}$ up to $2000 \mathrm{~kg} / \mathrm{cm}^{2}$. Since mercury boils at $356^{\circ} \mathrm{C}$ at atmospheric pressure, the pressure was never lowered below $100 \mathrm{~kg} / \mathrm{cm}^{2}$ during the course of the measurements. Values of the specific volume at $P=0$ are generated by extrapolation.

RESULTS AND DISCUSSION

Figure 1 presents some of the results in the form of isobars obtained by cross-plotting of the appropriate experimental isothermal data. Individual points are shown for the $P=1500 \mathrm{~kg} / \mathrm{cm}^{2}$ isobar only, in order to mark the measured isotherms and to give an idea of the scatter in the data. In addition,

Fig. 1. Selected isobars in the PVT diagram of PTFE, obtained by cross-plotting of experimental, isothermal data. Line A: marks the beginning of solidification on pressurizing the melt, starting from $P=100 \mathrm{~kg} / \mathrm{cm}^{2}$. Line B: approximate pressure dependence of the end of the melting interval in isobaric heating experiments, using data of McGeer and Duus. ${ }^{8}$ Line C: pressure dependence of the solid-solid transition temperature according to Beecroft and Swenson. ${ }^{12}$

TABLE I
Measured Specific Volumes of PTFE Melt Versus Temperature and Pressure

	Specific volume, $\mathrm{cm}^{3} / \mathrm{g}$				
$T,{ }^{\circ} \mathrm{C}$	$P=0^{\mathrm{a}}$	100	200	300	400
330.4	0.637				
335.4	0.642				
342.8	0.648	0.621			
348.5	0.653	0.627	0.607		
355.0	0.661	0.632	0.612	0.597	
364.2	0.669	0.637	0.617	0.601	0.589
372.4	0.677	0.643	0.620	0.606	0.594

${ }^{\text {a }}$ Pressure, in $\mathrm{kg} / \mathrm{cm}^{2}$.
individual points, not connected by lines, are shown in the melt transition range. The lowest isobar plotted from directly measured data, $P=100 \mathrm{~kg} / \mathrm{cm}^{2}$, shows a sharp end of the melting interval at about $342^{\circ} \mathrm{C}$. When the melt is pressurized above this temperature, starting from $P=100 \mathrm{~kg} / \mathrm{cm}^{2}$, it shows a beginning solidification when the pressure reaches line A. All points above line A therefore belong to the (possibly supercooled) melt. Experimental data for the melt are listed in Table I and will be discussed in detail below. The position of line A is noticeably dependent on the experimental time scale used. In these experiments the pressure was increased in increments of $100 \mathrm{~kg} / \mathrm{cm}^{2}$ in a few seconds, and the volume reading was taken after waiting for 1 min at each pressure. The relatively fast crystallization of PTFE contrasts sharply with the behavior of poly(4-methylpentene-1) ${ }^{3}$ which showed no solidification (on a similar time scale) when pressurized to $2000 \mathrm{~kg} / \mathrm{cm}^{2}$ above its zero-pressure melting point.

McGeer and Duus ${ }^{8}$ give $T_{m}=324^{\circ} \mathrm{C}+\left(0.154^{\circ} \mathrm{C} / \mathrm{atm}\right)$ for the pressure dependence of the melting point of PTFE in isobaric heating experiments for pressures to about 600 atm . However, their "melting point" does not correspond to the end of the melting interval, but rather to a somewhat lower temperature (compare their value of $324^{\circ} \mathrm{C}$ for $P=0$ with the commonly accepted value of $327^{\circ} \mathrm{C}$ for the end of the melting interval, ${ }^{9}$ which is also observed for this sample in DTA experiments). Assuming that the end of the melting interval shows the McGeer and Duus pressure coefficient of $0.154^{\circ} \mathrm{C} / \mathrm{atm}$, line B should represent the end of the melting interval in isobaric experiments. Line B intersects our extrapolated $P=0$ isobar within one degree from $327^{\circ} \mathrm{C}$, as it should, and it runs somewhat above line A for $P \geqslant 100 \mathrm{~kg} / \mathrm{cm}^{2}$, showing the relatively small amount of supercooling in our isothermal experiments. The pressure dependence of the melting transition reported by Pistorius ${ }^{10}$ (about $0.01^{\circ} \mathrm{C} / \mathrm{atm}$) is not in agreement with this work.

PTFE is known to show two solid-solid transitions between 19 and $30^{\circ} \mathrm{C} .{ }^{11-14}$ At higher pressures these transitions move to higher temperatures. Our data do not extend below $30^{\circ} \mathrm{C}$ and thus cannot be used to study these transitions in detail. However, the data points at $30^{\circ} \mathrm{C}$ and $P>1000 \mathrm{~kg} / \mathrm{cm}^{2}$ are clearly a little below the isobars drawn through the higher temperature points and thus indicate a transition. Line C in Figure 1 represents the pressure dependence of the solid-solid transition temperature according to Beecroft and Swenson. ${ }^{12}$ This line is certainly in agreement with our data.

A second-order transition near $130^{\circ} \mathrm{C}\left(400^{\circ} \mathrm{K}\right)$ was reported at Araki ${ }^{6}$ in precision zero-pressure dilatometry work. He interpreted it as the glass transition

Fig. 2. Large-scale plot of PVT data between 30° and $225^{\circ} \mathrm{C}$ and $P \leqslant 500 \mathrm{~kg} / \mathrm{cm}^{2}$, showing the second-order transition vs pressure. Solid dots: experimental points. Solid lines: linear leastsquares fits to experimental data.
of PTFE, based on the dependence of the strength of the transition on crystallinity and the ratio of the transition temperature to the melting point $\left(400^{\circ} \mathrm{K} / 600^{\circ} \mathrm{K}=0.66\right)$. This interpretation was put in doubt by the analysis of Ohzawa and Wada, ${ }^{15}$ who assigned a T_{g} of $208^{\circ}-238^{\circ} \mathrm{K}$. Haldon, Schell, and Simha ${ }^{16}$ find a change in expansion coefficient near $238^{\circ} \mathrm{K}$, while Boyer ${ }^{17}$ reports a T_{g} of $223^{\circ} \mathrm{K}$ based on extrapolation of copolymer data. Mord specifically, Boyer ${ }^{18}$ now assigns $223^{\circ} \mathrm{K}$ as $T_{g}(L)$, the lower of the two glass transitions found in many semicrystalline polymers, ${ }^{19}$ while rejecting the $400^{\circ} \mathrm{K}$ transition as a possible $T_{g}(U)$, because it does not show the right crystallinity dependence in the work of Araki ${ }^{6}$ and is too far removed from $T_{g}(L)$. This " $400^{\circ} \mathrm{K}$ transition" is clearly visible in an enlarged plot of our data in the range of $30<T<225^{\circ} \mathrm{C}$ and $0<P<500 \mathrm{~kg} / \mathrm{cm}^{2}$ (Fig. 2). The transition temperature T^{\dagger} at $P=0$ is about $138^{\circ} \mathrm{C}\left(410^{\circ} \mathrm{K}\right)$, increasing by about $0.015^{\circ} \pm 0.01^{\circ} \mathrm{C}$ per $\mathrm{kg} / \mathrm{cm}^{2}$.

The transition temperature at each pressure was determined as the intersection of straight-line fits for each isobar above and below the transition. The transition temperatures so determined were then fitted linearly against pressure, yielding the pressure coefficient and the uncertainty quoted above. The rather large uncertainty in $d T^{\dagger} / d P$ is caused by the rather sliding intersections of the isobars, especially at the higher pressures. It seems clear, however, that the pressure dependence is smaller than the pressure dependence of T_{g} in wholly amorphous polymers ${ }^{1,2,20,22}$ but similar to the pressure dependence of the glassy transition near $20^{\circ} \mathrm{C}$ in poly(4-methylpentene-1), ${ }^{3}$ another semicrystalline polymer. This transition has been interpreted as $T_{g}(L)$ by Boyer. ${ }^{19}$ The jump in the volume expansion coefficient at $T^{\dagger}(P=0)$ is $\Delta \beta=\beta\left(T>T^{\dagger}\right)-\beta\left(T<T^{\dagger}\right)=5.97 \times 10^{-4}$ $-3.98 \times 10^{-4}=1.99 \times 10^{-4^{\circ}} \mathrm{C}^{-1}$, yielding $\Delta \beta T^{+}=0.082$. This value might be corrected for crystallinity by dividing by 0.5 , yielding a value of 0.164 , which would be high when compared to true glass transition in wholly armophous polymers. However, this method of "correcting" for crystallinity is arbitrary (e.g., it would be wrong to apply this treatment to a $\left.T_{g}(U)^{19}\right)$, and the meaning of the result is not clear at all. We have included it simply as numerical information.

We now turn to a discussion of the melt data, which are listed in Table I. Our values may be compared to little-known work by Lupton, ${ }^{23}$ who measured PVT properties of PTFE up to a pressure of 600 bars by a simple piston displacement method. Lupton was able to fit his data to a modified Spencer-Gilmore equation of state:

$$
\begin{equation*}
(P+a) \cdot(V-b)=B(T-c) \tag{1}
\end{equation*}
$$

with $a=400 \mathrm{~atm}=413 \mathrm{~kg} / \mathrm{cm}^{2}, b=0.5 \mathrm{~cm}^{3} / \mathrm{g}, c=417^{\circ} \mathrm{K}, B=0.306 \mathrm{~cm}^{3} \mathrm{~atm} / \mathrm{g}$ ${ }^{\circ} \mathrm{K}=0.316 \mathrm{~cm}^{3}\left(\mathrm{~kg} / \mathrm{cm}^{2}\right) / \mathrm{g}{ }^{\circ} \mathrm{K}$. Recalculating specific volumes from this formula shows excellent agreement with our data. The difference in specific volume is always less than 1%, but Lupton's data show a smaller volume expansion coefficient for all pressures. For example, at $P=0$ we obtain $\beta=1.46 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$, and Lupton's data yield $\beta=1.17 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$.

It is often useful to have a simple mathematical representation of PVT data for purposes of interpolation and data comparison. We use the Tait equation,

$$
\begin{equation*}
\mathrm{V}(\mathrm{P}, \mathrm{~T})=\mathrm{V}(0, \mathrm{~T})\{1-0.0894 \ln [1+P / B(T)]\} \tag{2}
\end{equation*}
$$

to represent our melt data. This equation has been found to yield a good representation of the specific volumes along isotherms in a large number of polymeric melts and glasses. ${ }^{2,3,20-22,24,25}$ The melt parameter $B(T)$ is usually found to have an exponential temperature dependence ${ }^{2,20-22,24,25}$

$$
\begin{equation*}
B(T)=B_{1} \exp \left(-B_{2} T\right) \tag{3}
\end{equation*}
$$

Together with a suitable expression for $V(0, T)$, eqs. (2) and (3) represent a complete equation of state for a polymer melt. Least-squares fits for PTFE yielded

$$
V(0, T)=0.3200+9.5862 \times 10^{-4} T
$$

(V in $\mathrm{cm}^{3} / \mathrm{g}$ and T in ${ }^{\circ} \mathrm{C}$) and

$$
B(T)=4336 \exp \left(-9.38 \times 10^{-3} T\right)
$$

(B in $\mathrm{kg} / \mathrm{cm}^{2}$ and T in ${ }^{\circ} \mathrm{C}$). These fits reproduce the data in Table I to better than $0.001 \mathrm{~cm}^{3} / \mathrm{g}$.

The solid-state data cannot be fitted to the Tait equation. A point-by-point calculation of the Tait parameter leads to a B increasing along each isotherm by about $20 \%-30 \%$ between $P=0$ and $P=2000 \mathrm{~kg} / \mathrm{cm}^{2}$. The same tendency has been observed in a less pronounced form in other semicrystalline polymers. ${ }^{3,25}$

COMPARISON OF MELT DATA TO THE SIMHA-SOMCYNSKY HOLE THEORY

The Simha-Somcynsky (S-S) hole theory ${ }^{4}$ yields the following equation of state in reduced variables $\bar{V}=V / V^{*}, \tilde{T}=T / T^{*}, \tilde{P}=P / P^{*}$:

$$
\begin{equation*}
\tilde{P} \tilde{V} / \tilde{T}=\left[1-2^{-1 / 6} y(y \tilde{V})^{-1 / 3}\right]^{-1}+(2 y / \tilde{T})(y \tilde{V})^{-2}\left[1.011(y \tilde{V})^{-2}-1.2045\right] \tag{4}
\end{equation*}
$$

The hole fraction $1-y$ satisfies the following equilibrium condition: $(s / 3 c)\left[1+y^{-1} \ln (1-y)\right]=$

$$
\begin{align*}
& (y / 6 \tilde{T})(y \tilde{V})^{-2}\left[2.409-3.033(y \tilde{V})^{-2}\right] \\
& \quad+\left[2^{-1 / 6} y(y \tilde{V})^{-1 / 3}-1 / 3\right]\left[1-2^{-1 / 6} y(y \tilde{V})^{-1 / 3}\right]^{-1} \tag{5}
\end{align*}
$$

Here, $3 c / s$ is the "flexibility ratio," that is, the number of volume-dependent degrees of freedom per chain segment. Its value should be characteristic of the system. However, this ratio cannot be obtained from PVT data, since it has been shown ${ }^{4}$ that the reduced equations of state for different values of $3 c / s$ can be superimposed. Equations (4) and (5) are therefore commonly used by setting $3 c / s=1$. This will affect the values of the reducing parameters V^{*}, T^{*}, and P^{*} of a particular system, a fact which must be borne in mind when comparing the reducing parameters of different systems. From the definition of the starred reducing parameters, the following relation may be deduced:

$$
\begin{equation*}
\left(P^{*} V^{*} / T^{*}\right) M_{0}=R(c / s) \tag{6}
\end{equation*}
$$

where M_{0} is the molecular weight of the segment and R is the gas constant; R has the numerical value 83.1 when P^{*} is expressed in bars, T^{*} in ${ }^{\circ} \mathrm{K}$, and V^{*} in $\mathrm{cm}^{3} / \mathrm{g}$. Equation (6) becomes ($P^{*} V^{*} / T^{*}$) $=R / 3=27.7$ when $3 c / s=1$ is used; M_{0} then appears as the molecular weight of a segment having exactly one external degree of freedom.

The reducing parameters for PTFE melt were determined as follows: A numerical solution of eqs. (4) and (5) for $\tilde{P}=0$ yields values for the theoretical zero-pressure isobar $\tilde{V}_{0}(\equiv \tilde{V}(0, \tilde{T}))$ vs \tilde{T}. This relation is plotted on a large scale as $\log \tilde{V}_{0}$ versus $\log \tilde{T}$. On this plot the experimental points are superimposed by shifting the experimental $\log V_{0}$ versus $\log T$ curve parallel to the axes until a good superposition results. Figure 3 shows the results of this superposition for our melt data. We find $T^{*}=7906^{\circ} \mathrm{K}$ and $V^{*}=0.424 \mathrm{~cm}^{3} / \mathrm{g}$ from the shift factors. The range of reduced temperatures \tilde{T} covered $(0.0763<\tilde{T} \leqslant 0.0817)$ extends to much higher reduced temperatures than other work. (Previous high for polymers: $\tilde{T}=0.0513$ in work on high molecular weight polyethylene. ${ }^{5,25}$) The ratio T_{g} / T^{*} has been discussed with the intent of checking out the possibility of T_{g} being a reduced temperature. ${ }^{5,26}$ Values of T_{g} / T^{*} between 0.036 and 0.026 were found, the lower values being favored by low- T_{g} materials. For the sec-ond-order transition temperature $T^{\dagger} \approx 410^{\circ} \mathrm{k}$ displayed in Figure 2 the ratio is

Fig. 3. Experimental zero pressure isobar ($\log V_{0}$ vs $\log T$) for PTFE melt (solid points), superimposed on theoretical zero pressure isobar ($\log \tilde{V}_{0}$ vs $\log \tilde{T}$) of Simha-Somcynsky hole theory (solid line). This superposition yields $V^{*}=V_{0} / \tilde{V}_{0}=0.424 \mathrm{~cm}^{3} / \mathrm{g}$ and $T^{*}=T / \tilde{T}=7906^{\circ} \mathrm{K}$.
$T^{\dagger} / T^{*}=0.052$, again indicating that T^{\dagger} is not the glass transition. On the other hand, a value of 0.028 is obtained for $T_{g}(L) / T^{*}$, using Boyer's value ${ }^{18}$ of $\left.T_{g}\right) l$) $=223^{\circ} \mathrm{K}$, supporting the contention that the $223^{\circ} \mathrm{K}$ transition is indeed the glass transition.

The pressure-reducing parameter P^{*} is finally determined by calculating from the S-S theory for each data point the reduced pressure \tilde{P} needed to reproduce the observed reduced volume \tilde{V} (using V^{*} and T^{*} previously determined from the zero pressure isobar). Comparison of \tilde{P} with the actual P yields $P^{*}(=P / \tilde{P})$. The values of P^{*} so determined are averaged. The result is $P^{*}=7100 \mathrm{~kg} / \mathrm{cm}^{2}$ $=6960$ bar, with a standard deviation of 4% (14 data points). Figure 4 finally shows a direct comparison of the experimental data with the predictions of the S-S theory, using the above reducing parameters. The agreement is quite good, the maximum deviation in V being about $0.003 \mathrm{~cm}^{3} / \mathrm{g}$, which is about the same as the experimental uncertainty. Moreover, the deviations are not completely systematic.
$P^{*} V^{*} / T^{*}$ for this system is $0.373 \mathrm{bar} \mathrm{cm}^{3} / \mathrm{g}{ }^{\circ} \mathrm{K}$. Application of eq. (6) yields a value of 74.2 for M_{0}, the molecular weight of the effective segment (i.e., the segment having exactly one volume-dependent degree of freedom), and a value of 1.48 for the ratio M_{0} / M_{r}, where $M_{r}=50$ is the molecular weight per carbon backbone unit.

Simha and co-workers ${ }^{5}$ have found an empirical correlation between $P^{*} V^{*} / T^{*}$ (or M_{0}) and T^{*} is a number of systems:

$$
\begin{equation*}
\ln \left(P^{*} V^{*} / T^{*}\right)=1.319-(3 / 2.01)\left(T^{*} \times 10^{-4}\right) \tag{7}
\end{equation*}
$$

or

$$
10^{-4} T^{*}=\ln \left(M_{0} / 7.4067\right)^{2.01 / 3}
$$

(P^{*} in bars, V^{*} in $\mathrm{cm}^{3} / \mathrm{g}$, and T^{*} in ${ }^{\circ} \mathrm{K}$.) Our data on PTFE do not fit into this scheme at all. For $T^{*}=7906^{\circ} \mathrm{K}$, the predicted value of $P^{*} T^{*} / T^{*}$ is 1.15 , which is much higher than the experimental value of 0.373 , and the predicted value of M_{0} is 24.1, compared with the experimental value of 74.2. The predicted value of 24 for M_{0} is, of course, very low. It is hard to imagine how the requirement

Fig. 4. Comparison of the experimental specific volume of PTFE melt (solid dots) with theoretical isotherms (solid lines) calculated from the Simha-Somcynsky hole theory, using $V^{*}=0.424 \mathrm{~cm}^{3} / \mathrm{g}$, $T^{*}=7906^{\circ} \mathrm{K}, P^{*}=7100 \mathrm{~kg} / \mathrm{cm}^{2}=6960$ bars.
$3 c / s=1$ could be met in half a carbon backbone unit in such a simple structure. At any rate, eq. (7) should not be used in estimating P^{*} from zero pressure data (i.e., from T^{*} and V^{*}) in the case of PTFE, a method suggested by Olabisi and Simha. ${ }^{5,27}$

Another correlation displayed by Olabisi and Simha ${ }^{5}$ is that between the molar segmental volume $M_{0} V^{*}$ and T^{*}. Previously investigated systems fell on one of two lines:

$$
\begin{equation*}
10^{-4} T^{*}=\ln \left(M_{0} V^{*} / 9.3\right)^{2.1 / 3} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
10^{-4} T^{*}=\ln \left(M_{0} V^{*} / 7.4\right)^{2.2 / 3} \tag{9}
\end{equation*}
$$

(T^{*} in ${ }^{\circ} \mathrm{K}, V^{*}$ in $\mathrm{cm}^{3} / \mathrm{g}$). With $T^{*}=7906^{\circ} \mathrm{K}$, eq. (8) predicts $M_{0} V^{*}=28.8$ and eq. (9) yields 21.7 , compared with the experimental $M_{0} V^{*}$ value of $31.5 \mathrm{~cm}^{3} / \mathrm{mole}$. The agreement with eq. (8) is excellent.

For completeness we have also evaluated Lupton's results ${ }^{23}$ in terms of the S-S theory. The results are $V^{*}=0.461 \mathrm{~cm}^{3} / \mathrm{g}, T^{*}=8730^{\circ} \mathrm{K}, P^{*}=4470 \mathrm{~kg} / \mathrm{cm}^{2}$ $=4380$ bars. These parameters, especially P^{*}, are quite different from the ones deduced from our data, although Lupton's data do not differ more than 1% from ours. The different parameter values are caused mainly by the fact the Lupton's volume expansion coefficient is smaller than ours (see previous section). This illustrates the fact that small systematic differences in the data are magnified in the reducing parameters. In addition, we calculate $P^{*} V^{*} / T^{*}=0.231, M_{0}=$ $119.9, M_{0} / M_{r}=2.40$, and $M_{0} V^{*}=55.27$. Again the value of $P^{*} V^{*} / T^{*}$ is much below the trendline, eq. (7). In addition, there is no agreement between the experimental value of $M_{0} V^{*}$ and either of the two trendlines, eqs. (8) and (9).

The author is grateful to Dr. J. M. Lupton of the du Pont Co. for supplying him with a manuscript of his talk. ${ }^{23}$

References

1. P. Zoller, P. Bolli, V. Pahud, and H. Ackermann, Rev. Sci. Instrum., 47, 948 (1976).
2. P. Zoller, P. Bolli, U. Foppa, and E. Hersche, Kunststoffe, 66, 363 (1976).
3. P. Zoller, J. Appl. Polym. Sci., 22, 633 (1978).
4. R. Simha and T. Somcynsky, Macromolecules, 2, 342 (1969).
5. O. Olabisi and R. Simha, Macromolecules, 8, 211 (1975).
6. Y. Araki, J. Appl. Polym. Sci., 9, 421 (1965).
7. We use pressure units of $\mathrm{kg} / \mathrm{cm}^{2}$ (kilograms-force per cm^{2}, abbreviated $\mathrm{kp} / \mathrm{cm}^{2}$ in the German literature). Other units may be obtained as follows: $1 \mathrm{~kg} / \mathrm{cm}^{2}=9.80665 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}=0.980665$ $\mathrm{bar}=0.967841 \mathrm{~atm}=14.223 \mathrm{psi}$.
8. P. L. McGeer and H. C. Duus, J. Chem. Phys., 20, 1813 (1952).
9. C. A. Sperati and H. W. Starkweather, Jr., Fortschr. Hochpolym. Forsch., 2, 465 (1961).
10. C. W. F. T. Pistorius, Polymer, 5, 315 (1964).
11. C. E. Weir, J. Res. Natl. Bur. Std., 50, 95 (1953).
12. R. I. Beecroft and C. A. Swenson, J. Appl. Phys., 30, 1793 (1959).
13. G. M. Martin and R. K. Eby, J. Res. Natl. Bur. Stand., 72A, 467 (1968).
14. T. Yasuda and Y. Araki, J. Polym. Sci., 5, 331 (1961).
15. Y. Ohzawa and Y. Wada, Jpn. J. Appl. Phys., 3, 436 (1964).
16. R. A. Haldon, W. J. Schell, and R. Simha, J. Macromol. Sci.-Phys., B1, 759 (1967).
17. R. F. Boyer, Polym. Eng. Sci., 8, 161 (1968).
18. R. F. Boyer, Plast. Polym., 41, 71 (1973).
19. R. F. Boyer, J. Macromol. Sci.-Phys., B8, 503 (1973).
20. A. Quach and R. Simha, J. Appl. Phys., 42, 4592 (1971).
21. A. Quach, P. S. Wilson, and R. Simha, J. Macromol. Sci.-Phys., B9, 533 (1974).
22. J. E. McKinney and R. Simha, Macromolecules, 7, 894 (1974).
23. J. M. Lupton, Effect of Pressure on the Specific Volume of Polymer Melts, Meeting of the American Chem. Soc., September, 1958, Chicago, Ill.
24. R. Simha, P. S. Wilson, and O. Olabisi, Kolloid-Z. Z. Polym., 251, 402 (1973).
25. O. Olabisi and R. Simha, Macromolecules, 8, 211 (1975).
26. O. Olabisi and R. Simha, J. Appl. Polym. Sci., 21, 149 (1977).

Received January 26, 1977

[^0]: * Present address: E. I. Du Pont de Nemours \& Co., Central Research and Development Dept., Experimental Station, Wilmington, Delaware 19898.

